Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity.
نویسندگان
چکیده
The origin of orientation selectivity in visual cortical responses is a central problem for understanding cerebral cortical circuitry. In cats, many experiments suggest that orientation selectivity arises from the arrangement of lateral geniculate nucleus (LGN) afferents to layer 4 simple cells. However, this explanation is not sufficient to account for the contrast invariance of orientation tuning. To understand contrast invariance, we first characterize the input to cat simple cells generated by the oriented arrangement of LGN afferents. We demonstrate that it has two components: a spatial-phase-specific component (i.e., one that depends on receptive field spatial phase), which is tuned for orientation, and a phase-nonspecific component, which is untuned. Both components grow with contrast. Second, we show that a correlation-based intracortical circuit, in which connectivity between cell pairs is determined by the correlation of their LGN inputs, is sufficient to achieve well tuned, contrast-invariant orientation tuning. This circuit generates both spatially opponent, "antiphase" inhibition ("push-pull"), and spatially matched, "same-phase" excitation. The inhibition, if sufficiently strong, suppresses the untuned input component and sharpens responses to the tuned component at all contrasts. The excitation amplifies tuned responses. This circuit agrees with experimental evidence showing spatial opponency between, and similar orientation tuning of, the excitatory and inhibitory inputs received by a simple cell. Orientation tuning is primarily input driven, accounting for the observed invariance of tuning width after removal of intracortical synaptic input, as well as for the dependence of orientation tuning on stimulus spatial frequency. The model differs from previous push-pull models in requiring dominant rather than balanced inhibition and in predicting that a population of layer 4 inhibitory neurons should respond in a contrast-dependent manner to stimuli of all orientations, although their tuning width may be similar to that of excitatory neurons. The model demonstrates that fundamental response properties of cortical layer 4 can be explained by circuitry expected to develop under correlation-based rules of synaptic plasticity, and shows how such circuitry allows the cortex to distinguish stimulus intensity from stimulus form.
منابع مشابه
Contrast - Invariant Orientation Tuning in Cat VisualCortex : Thalamocortical Input Tuning andCorrelation - Based Intracortical
متن کامل
Journal of Neuroscience in press AN EMERGENT MODEL OF ORIENTATION SELECTIVITY IN CAT VISUAL CORTICAL SIMPLE CELLS
It is well known that visual cortical neurons respond vigorously to a limited range of stimulus orientations while their primary a erent inputs neurons in the lateral geniculate nucleus LGN respond well to all orientations Mechanisms based on intracortical inhibition and or converging thalamocortical a erents have previ ously been suggested to underlie the generation of cortical orientation sel...
متن کاملAn emergent model of orientation selectivity in cat visual cortical simple cells.
It is well known that visual cortical neurons respond vigorously to a limited range of stimulus orientations, while their primary afferent inputs, neurons in the lateral geniculate nucleus (LGN), respond well to all orientations. Mechanisms based on intracortical inhibition and/or converging thalamocortical afferents have previously been suggested to underlie the generation of cortical orientat...
متن کاملA biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression.
Simple cells in layer 4 of the primary visual cortex of the cat show contrast-invariant orientation tuning, in which the amplitude of the peak response is proportional to the stimulus contrast but the width of the tuning curve hardly changes with contrast. This study uses a detailed model of spiny stellate cells (SSCs) from cat area 17 to explain this property. The model integrates our experime...
متن کاملLocal correlation-based circuitry can account for responses to multi-grating stimuli in a model of cat V1.
In cortical simple cells of cat striate cortex, the response to a visual stimulus of the preferred orientation is partially suppressed by simultaneous presentation of a stimulus at the orthogonal orientation, an effect known as "cross-orientation inhibition." It has been argued that this is due to the presence of inhibitory connections between cells tuned for different orientations, but intrace...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 15 شماره
صفحات -
تاریخ انتشار 1998